
© 2007 IBM Corporation

BG/P Software Overview

Brian Smith (Rochester, MN)
smithbr@us.ibm.com

Rajiv Bendale (bendale@us.ibm.com)
Kirk Jordan (kjordan@us.ibm.com)
Jerrold Heyman (jheyman@us.ibm.com)
Bob Walkup (walkup@us.ibm.com)

MPI on BG/P

© 2007 IBM Corporation

Overview
 BlueGene/P Quick Introduction

–BG/P Hardware

–Software

 MPI Implementation on BlueGene/P
– General Comments and Optimization Suggestions

 I/O On BGP

MPI on BG/P

© 2007 IBM Corporation

BG/P Hardware Introduction

 Up to 2563 compute processors
– Largest machine: 40960 nodes at ANL

– Relatively slow processors (850 MHz)

– But -- low power, low cooling, very high density

 System-on-a-chip technology (4 cores, 8 FPUs,
memory controllers, networks, etc on single ASIC)

 3 very high-speed application networks
– Torus network has a DMA engine

MPI on BG/P

© 2007 IBM Corporation

BG/P ASIC

MPI on BG/P

© 2007 IBM Corporation

PowerPC 450 Processor
 Offshoot of PPC440 Processor
 32-bit architecture at 850 MHz
 Single integer unit (fxu)
 Single load/store unit
 Special double floating-point unit (dfpu)
 L1 Data cache : 32 KB total size, 32-Byte line size,

– 64-way associative, round-robin replacement
– 4 cores on BG/P are L1 cache coherent

 L2 Data cache : prefetch buffer, holds 16 128-byte lines
 L3 Data cache : 8 MB
 Memory : 2 GB DDR, ~13.6GB/s bandwidth
 Double FPU has 32 primary floating-point registers, 32 secondary floating-point

registers, and supports :
– standard powerpc instructions, which execute on fpu0 (fadd, fmadd, fadds, fdiv, …),

and
– SIMD instructions for 64-bit floating-point numbers (fpadd, fpmadd, fpre, …)

 Floating-point pipeline : 5 cycles

MPI on BG/P

© 2007 IBM Corporation

BG/P Hardware

 Double Hummer FPUs
– 2 64bit FPUs

– Not independent though

– Requires careful alignment considerations

– Compilers are good now, but hand-tuning critical sections
might be necessary/valuable

MPI on BG/P

© 2007 IBM Corporation

13.6 GF/s
8 MB EDRAM

4 processors

1 chip, 20
DRAMs

13.6 GF/s
2.0 GB DDR

Supports 4-way SMP

32 Node Cards
1024 chips, 4096 procs

14 TF/s
2 TB

1 to 72 or more Racks

1 PF/s +
144 TB +

Cabled 8x8x16Rack

System

Compute Card

Chip

435 GF/s
64 GB

(32 chips 4x4x2)
32 compute, 0-2 IO cards

Node Card

Blue Gene/P
Mandatory Scaling Slide

MPI on BG/P

© 2007 IBM Corporation

Performance (June 2008 Top 500)

 4 of the top 20 machines are
BlueGene/P

74

51

37

13

8

6

3

Ranking

22

23

14

18

110

116

140

InstallsRacks

MPI on BG/P

© 2007 IBM Corporation

Blue Gene/P Interconnection Networks
3 Dimensional Torus

– Interconnects all compute nodes
• Communications backbone for computations

– Adaptive cut-through hardware routing
– 3.4 Gb/s on all 12 node links (5.1 GB/s per node)
– 0.5 µs latency between nearest neighbors, 5 µs to the farthest

• MPI: 3 µs latency for one hop, 10 µs to the farthest
– 1.7/2.6 TB/s bisection bandwidth

 Collective Network
– Interconnects all compute and I/O nodes
– One-to-all broadcast functionality
– Reduction operations functionality
– 6.8 Gb/s of bandwidth per link
– Latency of one way tree traversal 2 µs, MPI 5 µs

Low Latency Global Barrier and Interrupt
– Latency of one way to reach all 72K nodes 0.65 µs, MPI 1.6 µs

Other networks
– 10Gb Functional Ethernet

• I/O nodes only
– 1Gb Private Control Ethernet

• Provides JTAG access to hardware.
Accessible only from Service Node system

MPI on BG/P

© 2007 IBM Corporation

BG/P Software

 Compute Node Kernel (CNK)
– Minimal kernel – handles signals, function shipping

syscalls to I/O nodes, starting/stopping jobs, threads

– Not much else

– Very “linux-like”, uses glibc
• Missing some system calls (fork() mostly)

– Limited support for mmap(), execve()
• But, most apps that run on Linux work out-of-the-box on

BG/P

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Run modes
Virtual Node Mode (VNM)

 Each core gets its own MPI rank,
kernel image

 4x the computing power

 Not necessarily 4x the performance
– Each core gets ¼ memory

– Network resources split in fourths

– Cache split in half (L3) and 2 cores
share each half

– Memory bandwidth split in half

– CPU does compute and
communication, though DMA helps

– Global communication can be
expensive

– No threads

SMP

 Full memory available

 All resources dedicated to single
kernel image

 Can start up to 4
pthreads/OpenMP threads
– OMP_NUMTHREADS=x

Dual

 Hybrid of the two modes

 2x MPI ranks of SMP, each rank
can start 1 additional thread

 ½ memory of SMP per rank

MPI on BG/P

© 2007 IBM Corporation

BG/P Software

 Compilers
– IBM XL compilers (f77, f90, C, C++)

• Latest version 11.1 for fortran and 9.0 for C/C++
– GNU (gcc, g++, gfortran) also available

– IBM ESSL libraries optimized for BG/P
• Good community success with gotoBLAS, ATLAS

– MASS(V) libraries

– Applications are built on the front-end nodes via cross
compiling

MPI on BG/P

© 2007 IBM Corporation

BG/P Software

 Control System
– Runs on service node

– Compute nodes are stateless
• State information is stored in db2 databases

– Database also monitors performance, environmentals,
etc

– Boots blocks, monitors jobs, etc

– Interaction via Navigator, LoadLeveler, etc.

MPI on BG/P

© 2007 IBM Corporation

BG/P I/O Nodes
 Scalable Configurations: Compute / IO Node ratio

– 16, 32, 64, 128 to 1.

 IO node specs
– Max bandwidth per IO Node = 1250 MB/s (10 Gb/s Ethernet)

 Streaming IO (Sockets) performance
– We’ve seen 500+ MB/s but we don’t have a good test environment in

Rochester
– IO can scale linearly due to parallel IO

 CIOD environment variables to fine tune file system
performance
– CIOD_RDWR_BUFFER_SIZE

• Should be set to the GPFS block size (typically 2MB or 4MB)
– Really only set-able by sysadmins. Need to set up the IO node ramdisk image

to have the env var

MPI on BG/P

© 2007 IBM Corporation

BG/P Software

 I/O Node Kernel
– Linux (MCP)

– Very minimal distribution (almost everything on the I/O
node is in busybox)

– Only connection from compute nodes to outside world

– Handles syscalls (ie fopen()) and I/O requests

MPI on BG/P

© 2007 IBM Corporation

BGP Communications Overview

 The stack:
– SPI

– DCMF/CCMI

– MPI, GA/ARMCI

 Optimizations

MPI on BG/P

© 2007 IBM Corporation

BG/P Communications Software Stack Design

 Support many programming paradigms
 Non blocking communication

– Support for asynchronous communication where possible
 Open source messaging runtime

– Extendible
– Component oriented design
– http://dcmf.anl-external.org/wiki

– Mailing list
 General Availability will have product version of software

– Extensions provided through contribs

MPI on BG/P

© 2007 IBM Corporation

BGP Messaging Stack

 Multiple programming paradigms supported
– MPI and ARMCI, Charm++ and UPC (as research initiatives)

 SPI : Low level systems programming interface

 DCMF : Portable active-message API

UPC Compiler/Runtime

SPI

Message Layer Core (C++)

DMA Device

CCMI Collective Layer
(barrier, broadcast, allreduce)

pt2pt protocols
(eager, rendezvous)

ARMCI
primitivesMPICH

UPC
messaging

Converse/Charm++

DCMF API (C)

Multisend protocols

Network Hardware (DMA, Tree, GI)

IPC DeviceTree Device

GA

GI Device

Open
Sourced

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – SPI

 System programming interface

 Very low level, basically right on top of the hardware

 Use is complicated, but can provide the best possible
performance

 Very stable interface.

 Doxygen comments, plus look at higher levels for examples

 Used by DCMF, some QCD codes

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - DCMF
 Non blocking runtime
 Multiple Protocol Registration
 Active Messaging API
 Essentially just point-to-point interfaces:

– DCMF_Send, DCMF_Put, DCMF_Get
– DCMF_Multisend

 DCMF_Messager_advance()
– Call handlers
– Call callbacks when the counters have hit zero

 Heavily doxygenated, lots of usage examples
 Good performance/complexity tradeoff for applications
 Portable

– Sockets interface available soon, currently running on a number of platforms
 Fairly stable interface (one or two minor changes on the horizon for BGP

V1R3)
 Proposed BoF for SC08
 Paper at ICS08

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - CCMI

 Component Collective Message Interface
– Portable layer for collectives

• Basically requires a multi-send protocol to implement our
optimized collectives

• We have an MPI multi-send implementation
– Paper being presented at Euro PVM/MPI

– Sits on top/to the side of DCMF

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - MPI

 The primary function of BG/P: running your MPI-
based applications

 Our MPI looks suspiciously like MPICH2 1.0.x
– “MPI standard 2.0-”
– No process management (MPI_Spawn(), MPI_Connect(),

etc)
– Based on MPICH2 1.0.7 base code
– We are working closely with ANL to re-integrate all BGP

changes in their main tree

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – GA/ARMCI

 ARMCI – Aggregate remote memory copy
interface

 From PNNL

 Sits on top of DCMF and MPI

 Very good performance, close to straight DCMF
code

 Paper being presented at ICPP in Seattle

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – GA/ARMCI

 Global Arrays from PNNL

 Used by major applications (NWChem, GAMESS-
UK, ScalaBLAST, gp-shmem, GAMESS-US, etc)

 Sits on top of ARMCI and MPI

 Support for large distributed arrays

 Considered “Technology Preview”
– We are working closely with PNNL to improve support of

GA/ARMCI on BGP (performance)

MPI on BG/P

© 2007 IBM Corporation

Communications Optimizations

Communications
Optimizations

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Optimization Suggestions

 Point-to-point
– DMA Tuning

 Mapping

 Collectives
– Our strategies

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Point-to-Point
 Change rendezvous messaging size

– Larger partitions should have lower cutoff

– Increase cutoff if mostly nearest-neighbor communications

– Environment variable: DCMF_EAGER=xxxxx or
DCMF_RVZ=xxxxx or DCMF_RZV=xxxxx

– Default: 1200 bytes PALLAS (PingPing) Performance, 512 nodes CoProcessor mode

Driver=DRV100_2006_060310, BGLMPI_EAGER=10000

0

20

40

60

80

100

120

140

160

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Payload (bytes)

M
b

y
te

s
/s

e
c WT0,SWOA0

WT0,SWOA1

WT1,SWOA0

WT1,SWOA1

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Point-to-Point

 Overlapping communication and computation:

– Easier on BG/P than BG/L

– Keep programs in sync as much as you can
• alternate computation and communication phases

– Post receives/waits early and often

– Try interrupts
– DCMF_INTERRUPTS=1
– Very narrow region of overlap

 Processors are slow relative to network speed

MPI on BG/P

© 2007 IBM Corporation

Overlap of Computation and Communication

MPI on BG/P

© 2007 IBM Corporation

Overlap with Interrupts

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Point-to-Point

 Avoid load imbalance/“master node”

– bad for scaling

 Shorten Manhattan distance messages have to traverse

– send to nearest neighbors!

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Point-to-Point
 Avoid synchronous sends

– increases latency
– Sometimes required to prevent unexpected messages and memory

problems
– Usually best to rethink

 Avoid buffered sends
– memory copies are bad and bsend is pointless on this implementation

 Avoid vector data, non-contiguous data types
– BG/P MPI doesn't have a nice way to deal with them (requires at least one

memcopy, usually 2) and no BG/P specific optimizations

 Post receives in advance/often
– unexpected messages hurt performance and take memory

 Be cache friendly: align to 16 byte (32 byte is even better)
– More in compiler talk, but __alignx() and disjoint pragmas.

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – DMA Tuning Parameters
 DCMF_RECFIFO=xxxx

– Default 8mb
– Size (in bytes) of each DMA reception FIFO
– Larger values can reduce torus network congestion, but takes application memory
– Note: In VNM this is 8mb PER RANK

 DCMF_INJFIFO=xx
– Default is 32k
– Size (in bytes) of each DMA injection FIFO
– Larger values can help reduce overhead when there are many outstanding messages
– DCMF messaging uses up to 25 injection FIFOs.
– Rounded up to a multiple of 32 (each descriptor is 32 bytes)

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – DMA Tuning Parameters

 DCMF_RGETFIFO=xx
– Default 32k
– Size (in bytes) of the remote get FIFOs.
– Larger values can help reduce overhead when there are many

outstanding messages
– DCMF messaging uses up to 7 remote get FIFOs.
– Rounded up to the nearest multiple of 32

 DCMF_POLLLIMIT=x
– Default 16
– This sets the limit on the number of consecutive non-empty polls of

the reception FIFO before exiting the advance function
– A value of 0 means stay in advance until the FIFOs are empty

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – DMA Tuning Parameters

 DCMF_INJCOUNTER=x
– Default is 8
– Sets the number of DMA injection counter subgroups that

DCMF can use. Maximum is 8.
– Only useful if something else is using the DMA, ie, an

application making SPI calls directly

 DCMF_RECCOUNTER=x
– Same as INJCOUNTER, but for reception counter

subgroups.

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – DMA Tuning Parameters

 DCMF_FIFOMODE=DEFAULT/RZVANY/ALLTOALL
– Determines how many injection FIFOs are used and what they are

used for
– DEFAULT uses 22 injection FIFOs.
– RZVANY uses 6 more remote get FIFOs than DEFAULT.
– ALLTOALL uses 16 alltoall FIFOs (instead of 6) that can inject into

any of the torus FIFOs.
– Try RZVANY if your app uses lots of large messages
– Try ALLTOALL if your app does lots of alltoall communications
– Note: RZVANY and ALLTOALL consume more memory – 32k per

extra FIFO
– Note: You can’t coexist with “native” SPI calls if you aren’t in

DEFAULT mode

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - Mapping

 Mapping can help point-to-point based codes
 Stock mappings implemented already – XYZT, XZYT, YXZT,

YZXT, ZXYT, ZYXT, TXYZ, TXZY, TYXZ, TYZX, TZXY, TZYX
 Default mapping in VNM/Dual is XYZT (sorry about that)

– Cores on the same node are not contiguous MPI ranks

– specifying TXYZ can be very helpful
 (almost)Arbitrary mapping files can be used
 mpirun –mapfile XYZT
 mpirun –mapfile /path/to/my/mapfile.txt

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - Mapping

 Example:
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

 Line number in file is desired MPI rank. Each node
in partition must be listed in file.

 Coordinates are X, Y, Z, and core ID (virtual node
mode/dual mode)

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Communicator Creation
 APIs to map nodes to specific hardware and/or pset configurations

– MPIX_Cart_comm_create()
• Returns an MPI communicator that is exactly the same as the underlying

hardware
• Eliminates need for complex node-mapping files

– MPIX_Pset_same_comm_create()
• Returns a communicator where all nodes belong to the same pset

– MPIX_Pset_diff_comm_create()
• Returns a communicator where all nodes have the same pset rank

– MPI_Cart_create() with reorder true attempts to give communicators
that mirror hardware

 DCMF_TOPOLOGY=0 disables any attempt to give good
communicators from MPI_Cart_create() calls

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - MPIX_Cart_comm_create()
 Creates a 4D Cartesian communicator

– Mimics the hardware

– The X, Y & Z dimensions match those of the partition

– The T dimension will have cardinality 1 in copro, 2 in dual, 4
in VNM

– The communicator wrap-around links match

– The coordinates of a node in the communicator match its
coordinates in the partition

 Important
– This is a collective operation and must be run on all nodes

– Check the return code when using this function! Look for
MPI_SUCCESS

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - MPIX_Pset_same_comm_create()
 Creates communicators where

the members share an I/O
node

 Useful to maximize the
number of I/O nodes used
during I/O operations
– Node 0 in each of the

communicators can be arbitrarily
used as the “master node” for
the communicator, collecting
information from the other nodes
for writing to disk.

Application

Comm
1

Comm
2

Comm
3

Comm
4

1

2

3

4

5

6

7

8

Pset 4

1

2

3

4

5

6

7

8

Pset 3

1

2

3

4

5

6

7

8

Pset 2

1

2

3

4

5

6

7

8

Pset 1

MPI on BG/P

© 2007 IBM Corporation

MPI - MPIX_Pset_diff_comm_create ()
 All nodes in the communicator have

a different I/O node
 Rarely used without using

same_comm() too
– Nodes without rank 0 in

same_comm() sleep
– Nodes with rank 0 in same_comm()

would have a communicator created
with diff_comm(). That
communicator could be used
instead of MPI_COMM_WORLD for
communication/coordination of I/O
requests

Comm
1

Comm
2

Comm
3

Comm
4

Comm
5

Comm
6

Comm
7

Comm
8

Pset 4Pset 3Pset 2Pset 1

8888

7777

6666

5555

4444

3333

2222

1111

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Collectives

 Currently optimized collectives:
– Broadcast (COMM_WORLD, rectangle, arbitrary)
– (All)reduce (COMM_WORLD, rectangle, arbitrary)
– Alltoall(v|w) (all comms, single threaded only)
– Barrier (COMM_WORLD, arbitrary)
– Allgather(v) (uses (async)bcast, reduce, or alltoall)
– Gather (uses reduce)
– Reduce_scatter (uses reduce, then scatterv)
– Scatter (uses bcast)
– Scatterv (uses alltoallv or bcast with an env var)

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Collectives

 Use collectives whenever possible
– For example, replacing lots of sends/recvs with an

alltoall(v)

– Bad idea to implement collectives using your own point-
to-point based algorithm
• Too much overhead on point to point communications
• Using MPI Send/Recv has message matching overhead
• Can’t take advantage of BG/P networks

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Collectives Options

 Optimized collectives can be disabled if necessary
– DCMF_COLLECTIVE=0 or DCMF_COLLECTIVES=0
– Disabling all can save application memory space, at the expense of performance

(~10mb)
– Specific collectives can be forced to use MPICH:

• DCMF_{}=MPICH eg, DCMF_BCAST=MPICH
– Specific collectives can attempt to use certain algorithms:

• DCMF_ALLGATHER=ALLTOALLV DCMF_SCATTERV=BCAST
 Generally unadvisable to force alternative algorithms.
 “Well-behaved” applications can also use:

– DCMF_SAFEALLGATHERV=Y
– DCMF_SAFEALLGATHER=Y
– DCMF_SAFESCATTERV=Y

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Our Collectives Strategies

 Reduce/Allreduce:
– If the tree supports the operation and datatype and you are on

COMM_WORLD, use the tree
– else if you are on a rectangular communicator use a rectangular

allreduce algorithm
– else use a binomial algorithm
– else use MPICH

 Barrier:
– If you are on COMM_WORLD, use GI
– else use binomial
– else use MPICH

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Our Collectives Strategies

 Bcast
– If COMM_WORLD use tree
– Else if communicator is rectangular use an async

rectangle protocol for small messages, then switch to
synchronous
• DCMF_ASYNCCUTOFF=8192

– Else if communicator is irregular use an async binomial
protocol for small messages, then switch to synchronous
• DCMF_ASYNCCUTOFF=16384

– Else use MPICH

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Our Collectives Strategies

 Allgather(v)
– If treereduce and treebcast available and large message

• Use bcast. If smaller message use reduce
– If rectangular subcomm send a number of async bcasts, wait,

repeat
• DCMF_NUMREQUESTS=32 is default

– If irregular subcomm send a number of async binom bcasts,
wait, repeat
• DCMF_NUMREQUESTS=32 is default

– Else use alltoall
– Else use MPICH

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P

 Performance hints/suggestions
– Avoiding deadlock

– Bad coding ideas

– Touching buffers early

– Mixing collectives and point-to-point

– Flooding one node

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Avoid deadlocks

 Talk before you listen.
 Illegal MPI code

– find it in most MPI books

 BlueGene/P MPI is designed not
to deadlock easily.

– It will likely survive this
code.

 This code will cause MPI to
allocate memory to deal with
unexpected messages. If MPI
runs out of memory, it will stop
with an error message

CPU1 code:

MPI_Send (cpu2);

MPI_Recv(cpu2);

CPU2 code:

MPI_Send(cpu1);

MPI_Recv(cpu1);

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Send/Recv in Opposite Order

 Post receives in one order,
sends in the opposite order

 This is legal MPI code

 BlueGene/P MPI can choke if the
sum of buffers is greater than
the amount of physical memory

– Packet Pacing helps

…but try to avoid doing
this anyway

CPU1 code:

MPI_ISend(cpu2, tag1);

MPI_ISend(cpu2, tag2);

...

MPI_ISend(cpu2, tagn);

CPU2 code:

MPI_Recv(cpu1, tagn);

MPI_Recv(cpu1, tagn-1);

...

MPI_Recv(cpu1, tag1);

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Touching buffers early

 write send/receive buffers
before completion

– results in data race on any
machine

 touch send buffers before
message completion

– not legal by standard

– BG/P MPI will survive it today

– no guarantee about tomorrow

 touch receive buffers before
completion

– BG/P MPI will yield wrong
results

req = MPI_Isend (buffer);

buffer[0] = something;

MPI_Wait(req);

req = MPI_Isend (buffer);

z = buffer[0];

MPI_Wait (req);

req = MPI_Irecv (buffer);

z = buffer[0];

MPI_Wait (req);

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – MPI_Test memory leaks

 Have to wait for all requests
– The standard requires waiting

– Or looping until MPI_Test returns
true

– Otherwise, you are leaking
requests

 MPI_Test advances the message
layer on each call

 We don’t get much comm/compute
overlap so just do the MPI_Wait
instead of an MPI_Test.

Code:
req = MPI_Isend(...);

MPI_Test (req);

... do something else; forget about req ...

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Collectives mixed with point-to-point

 On the ragged edge of
legality

 BlueGene/P MPI works

 Multiple networks issue:
– Isend handled by torus

network

– Barrier handled by GI network

 Try to avoid this

CPU 1 code:

req = MPI_Isend (cpu2);

MPI_Barrier();

MPI_Wait(req);

CPU 2 code:

MPI_Recv (cpu1);

MPI_Barrier();

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Spamming one node
 This is legal MPI code

– also ... bad idea

– not scalable, even when it
works

 BlueGene/P MPI can run out of
buffer space (packet pacing
helps though)

 One (bad) solution – use SSend
– Forces synchronicity

– Giant performance hit

 Plenty of examples of this out
there

– Don't write code such as this

– Even if you think it should
work

CPU 1 to n-1 code:
MPI_Send(cpu0);

CPU 0 code:

for (i=1; i<n; i++)

 MPI_Recv(cpu[i]);

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Spamming one node

 Try multiple masters
– Need to find optimal master/submaster/worker

arrangement

 If funneling to one node for I/O
– Try MPI I/O

– Use the communicator creation functions to optimize I/O
usage

MPI on BG/P

© 2007 IBM Corporation

MPI IO

 BG/P supports the full MPI IO implementation
 BG/P specific “device”, plus support for GFPS, PVFS
 Also use the MPIX_Pset_{}_comm_create routines
 Env vars for tuning

– BGLMPIO_COMM – Defines how data is exchanged on collective reads/writes.
Default is 0 – Use MPI_Alltoallv. 1 uses MPI_Isend/Irecv

– BGLMPIO_TUNEGATHER – Tune how offsets are communicated for
aggregator I/O. Default is 1 – Use MPI_Allreduce. 0 uses two MPI_Allgather
calls

– BGLMPIO_TUNEBLOCKING – Tune how aggregate file domains are
calculated. Default is 1 – Use the underlying file system’s block size and use
MPI_ALLTOALLV to exchange information. 0 says evenly calculate file
domains across aggregators and use MPI_Isend/Irecv to exchange the
information

MPI on BG/P

© 2007 IBM Corporation

GPFS

 Red paper/redbook coming soon for things to tune
on your service node to improve GPFS
performance

 Until then, use the MPIX_Pset_{} functions and do
as much as you can at the app level for IO tuning

 We can help with specific IO questions too

MPI on BG/P

© 2007 IBM Corporation

Questions?

